
© 2007 IBM Corporation

BG/P Software Overview

Brian Smith (Rochester, MN)
smithbr@us.ibm.com

Rajiv Bendale (bendale@us.ibm.com)
Kirk Jordan (kjordan@us.ibm.com)
Jerrold Heyman (jheyman@us.ibm.com)
Bob Walkup (walkup@us.ibm.com)

MPI on BG/P

© 2007 IBM Corporation

Overview
 BlueGene/P Quick Introduction

–BG/P Hardware

–Software

 MPI Implementation on BlueGene/P
– General Comments and Optimization Suggestions

 I/O On BGP

MPI on BG/P

© 2007 IBM Corporation

BG/P Hardware Introduction

 Up to 2563 compute processors
– Largest machine: 40960 nodes at ANL

– Relatively slow processors (850 MHz)

– But -- low power, low cooling, very high density

 System-on-a-chip technology (4 cores, 8 FPUs,
memory controllers, networks, etc on single ASIC)

 3 very high-speed application networks
– Torus network has a DMA engine

MPI on BG/P

© 2007 IBM Corporation

BG/P ASIC

MPI on BG/P

© 2007 IBM Corporation

PowerPC 450 Processor
 Offshoot of PPC440 Processor
 32-bit architecture at 850 MHz
 Single integer unit (fxu)
 Single load/store unit
 Special double floating-point unit (dfpu)
 L1 Data cache : 32 KB total size, 32-Byte line size,

– 64-way associative, round-robin replacement
– 4 cores on BG/P are L1 cache coherent

 L2 Data cache : prefetch buffer, holds 16 128-byte lines
 L3 Data cache : 8 MB
 Memory : 2 GB DDR, ~13.6GB/s bandwidth
 Double FPU has 32 primary floating-point registers, 32 secondary floating-point

registers, and supports :
– standard powerpc instructions, which execute on fpu0 (fadd, fmadd, fadds, fdiv, …),

and
– SIMD instructions for 64-bit floating-point numbers (fpadd, fpmadd, fpre, …)

 Floating-point pipeline : 5 cycles

MPI on BG/P

© 2007 IBM Corporation

BG/P Hardware

 Double Hummer FPUs
– 2 64bit FPUs

– Not independent though

– Requires careful alignment considerations

– Compilers are good now, but hand-tuning critical sections
might be necessary/valuable

MPI on BG/P

© 2007 IBM Corporation

13.6 GF/s
8 MB EDRAM

4 processors

1 chip, 20
DRAMs

13.6 GF/s
2.0 GB DDR

Supports 4-way SMP

32 Node Cards
1024 chips, 4096 procs

14 TF/s
2 TB

1 to 72 or more Racks

1 PF/s +
144 TB +

Cabled 8x8x16Rack

System

Compute Card

Chip

435 GF/s
64 GB

(32 chips 4x4x2)
32 compute, 0-2 IO cards

Node Card

Blue Gene/P
Mandatory Scaling Slide

MPI on BG/P

© 2007 IBM Corporation

Performance (June 2008 Top 500)

 4 of the top 20 machines are
BlueGene/P

74

51

37

13

8

6

3

Ranking

22

23

14

18

110

116

140

InstallsRacks

MPI on BG/P

© 2007 IBM Corporation

Blue Gene/P Interconnection Networks
3 Dimensional Torus

– Interconnects all compute nodes
• Communications backbone for computations

– Adaptive cut-through hardware routing
– 3.4 Gb/s on all 12 node links (5.1 GB/s per node)
– 0.5 µs latency between nearest neighbors, 5 µs to the farthest

• MPI: 3 µs latency for one hop, 10 µs to the farthest
– 1.7/2.6 TB/s bisection bandwidth

 Collective Network
– Interconnects all compute and I/O nodes
– One-to-all broadcast functionality
– Reduction operations functionality
– 6.8 Gb/s of bandwidth per link
– Latency of one way tree traversal 2 µs, MPI 5 µs

Low Latency Global Barrier and Interrupt
– Latency of one way to reach all 72K nodes 0.65 µs, MPI 1.6 µs

Other networks
– 10Gb Functional Ethernet

• I/O nodes only
– 1Gb Private Control Ethernet

• Provides JTAG access to hardware.
Accessible only from Service Node system

MPI on BG/P

© 2007 IBM Corporation

BG/P Software

 Compute Node Kernel (CNK)
– Minimal kernel – handles signals, function shipping

syscalls to I/O nodes, starting/stopping jobs, threads

– Not much else

– Very “linux-like”, uses glibc
• Missing some system calls (fork() mostly)

– Limited support for mmap(), execve()
• But, most apps that run on Linux work out-of-the-box on

BG/P

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Run modes
Virtual Node Mode (VNM)

 Each core gets its own MPI rank,
kernel image

 4x the computing power

 Not necessarily 4x the performance
– Each core gets ¼ memory

– Network resources split in fourths

– Cache split in half (L3) and 2 cores
share each half

– Memory bandwidth split in half

– CPU does compute and
communication, though DMA helps

– Global communication can be
expensive

– No threads

SMP

 Full memory available

 All resources dedicated to single
kernel image

 Can start up to 4
pthreads/OpenMP threads
– OMP_NUMTHREADS=x

Dual

 Hybrid of the two modes

 2x MPI ranks of SMP, each rank
can start 1 additional thread

 ½ memory of SMP per rank

MPI on BG/P

© 2007 IBM Corporation

BG/P Software

 Compilers
– IBM XL compilers (f77, f90, C, C++)

• Latest version 11.1 for fortran and 9.0 for C/C++
– GNU (gcc, g++, gfortran) also available

– IBM ESSL libraries optimized for BG/P
• Good community success with gotoBLAS, ATLAS

– MASS(V) libraries

– Applications are built on the front-end nodes via cross
compiling

MPI on BG/P

© 2007 IBM Corporation

BG/P Software

 Control System
– Runs on service node

– Compute nodes are stateless
• State information is stored in db2 databases

– Database also monitors performance, environmentals,
etc

– Boots blocks, monitors jobs, etc

– Interaction via Navigator, LoadLeveler, etc.

MPI on BG/P

© 2007 IBM Corporation

BG/P I/O Nodes
 Scalable Configurations: Compute / IO Node ratio

– 16, 32, 64, 128 to 1.

 IO node specs
– Max bandwidth per IO Node = 1250 MB/s (10 Gb/s Ethernet)

 Streaming IO (Sockets) performance
– We’ve seen 500+ MB/s but we don’t have a good test environment in

Rochester
– IO can scale linearly due to parallel IO

 CIOD environment variables to fine tune file system
performance
– CIOD_RDWR_BUFFER_SIZE

• Should be set to the GPFS block size (typically 2MB or 4MB)
– Really only set-able by sysadmins. Need to set up the IO node ramdisk image

to have the env var

MPI on BG/P

© 2007 IBM Corporation

BG/P Software

 I/O Node Kernel
– Linux (MCP)

– Very minimal distribution (almost everything on the I/O
node is in busybox)

– Only connection from compute nodes to outside world

– Handles syscalls (ie fopen()) and I/O requests

MPI on BG/P

© 2007 IBM Corporation

BGP Communications Overview

 The stack:
– SPI

– DCMF/CCMI

– MPI, GA/ARMCI

 Optimizations

MPI on BG/P

© 2007 IBM Corporation

BG/P Communications Software Stack Design

 Support many programming paradigms
 Non blocking communication

– Support for asynchronous communication where possible
 Open source messaging runtime

– Extendible
– Component oriented design
– http://dcmf.anl-external.org/wiki

– Mailing list
 General Availability will have product version of software

– Extensions provided through contribs

MPI on BG/P

© 2007 IBM Corporation

BGP Messaging Stack

 Multiple programming paradigms supported
– MPI and ARMCI, Charm++ and UPC (as research initiatives)

 SPI : Low level systems programming interface

 DCMF : Portable active-message API

UPC Compiler/Runtime

SPI

Message Layer Core (C++)

DMA Device

CCMI Collective Layer
(barrier, broadcast, allreduce)

pt2pt protocols
(eager, rendezvous)

ARMCI
primitivesMPICH

UPC
messaging

Converse/Charm++

DCMF API (C)

Multisend protocols

Network Hardware (DMA, Tree, GI)

IPC DeviceTree Device

GA

GI Device

Open
Sourced

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – SPI

 System programming interface

 Very low level, basically right on top of the hardware

 Use is complicated, but can provide the best possible
performance

 Very stable interface.

 Doxygen comments, plus look at higher levels for examples

 Used by DCMF, some QCD codes

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - DCMF
 Non blocking runtime
 Multiple Protocol Registration
 Active Messaging API
 Essentially just point-to-point interfaces:

– DCMF_Send, DCMF_Put, DCMF_Get
– DCMF_Multisend

 DCMF_Messager_advance()
– Call handlers
– Call callbacks when the counters have hit zero

 Heavily doxygenated, lots of usage examples
 Good performance/complexity tradeoff for applications
 Portable

– Sockets interface available soon, currently running on a number of platforms
 Fairly stable interface (one or two minor changes on the horizon for BGP

V1R3)
 Proposed BoF for SC08
 Paper at ICS08

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - CCMI

 Component Collective Message Interface
– Portable layer for collectives

• Basically requires a multi-send protocol to implement our
optimized collectives

• We have an MPI multi-send implementation
– Paper being presented at Euro PVM/MPI

– Sits on top/to the side of DCMF

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - MPI

 The primary function of BG/P: running your MPI-
based applications

 Our MPI looks suspiciously like MPICH2 1.0.x
– “MPI standard 2.0-”
– No process management (MPI_Spawn(), MPI_Connect(),

etc)
– Based on MPICH2 1.0.7 base code
– We are working closely with ANL to re-integrate all BGP

changes in their main tree

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – GA/ARMCI

 ARMCI – Aggregate remote memory copy
interface

 From PNNL

 Sits on top of DCMF and MPI

 Very good performance, close to straight DCMF
code

 Paper being presented at ICPP in Seattle

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – GA/ARMCI

 Global Arrays from PNNL

 Used by major applications (NWChem, GAMESS-
UK, ScalaBLAST, gp-shmem, GAMESS-US, etc)

 Sits on top of ARMCI and MPI

 Support for large distributed arrays

 Considered “Technology Preview”
– We are working closely with PNNL to improve support of

GA/ARMCI on BGP (performance)

MPI on BG/P

© 2007 IBM Corporation

Communications Optimizations

Communications
Optimizations

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Optimization Suggestions

 Point-to-point
– DMA Tuning

 Mapping

 Collectives
– Our strategies

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Point-to-Point
 Change rendezvous messaging size

– Larger partitions should have lower cutoff

– Increase cutoff if mostly nearest-neighbor communications

– Environment variable: DCMF_EAGER=xxxxx or
DCMF_RVZ=xxxxx or DCMF_RZV=xxxxx

– Default: 1200 bytes PALLAS (PingPing) Performance, 512 nodes CoProcessor mode

Driver=DRV100_2006_060310, BGLMPI_EAGER=10000

0

20

40

60

80

100

120

140

160

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Payload (bytes)

M
b

y
te

s
/s

e
c WT0,SWOA0

WT0,SWOA1

WT1,SWOA0

WT1,SWOA1

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Point-to-Point

 Overlapping communication and computation:

– Easier on BG/P than BG/L

– Keep programs in sync as much as you can
• alternate computation and communication phases

– Post receives/waits early and often

– Try interrupts
– DCMF_INTERRUPTS=1
– Very narrow region of overlap

 Processors are slow relative to network speed

MPI on BG/P

© 2007 IBM Corporation

Overlap of Computation and Communication

MPI on BG/P

© 2007 IBM Corporation

Overlap with Interrupts

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Point-to-Point

 Avoid load imbalance/“master node”

– bad for scaling

 Shorten Manhattan distance messages have to traverse

– send to nearest neighbors!

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Point-to-Point
 Avoid synchronous sends

– increases latency
– Sometimes required to prevent unexpected messages and memory

problems
– Usually best to rethink

 Avoid buffered sends
– memory copies are bad and bsend is pointless on this implementation

 Avoid vector data, non-contiguous data types
– BG/P MPI doesn't have a nice way to deal with them (requires at least one

memcopy, usually 2) and no BG/P specific optimizations

 Post receives in advance/often
– unexpected messages hurt performance and take memory

 Be cache friendly: align to 16 byte (32 byte is even better)
– More in compiler talk, but __alignx() and disjoint pragmas.

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – DMA Tuning Parameters
 DCMF_RECFIFO=xxxx

– Default 8mb
– Size (in bytes) of each DMA reception FIFO
– Larger values can reduce torus network congestion, but takes application memory
– Note: In VNM this is 8mb PER RANK

 DCMF_INJFIFO=xx
– Default is 32k
– Size (in bytes) of each DMA injection FIFO
– Larger values can help reduce overhead when there are many outstanding messages
– DCMF messaging uses up to 25 injection FIFOs.
– Rounded up to a multiple of 32 (each descriptor is 32 bytes)

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – DMA Tuning Parameters

 DCMF_RGETFIFO=xx
– Default 32k
– Size (in bytes) of the remote get FIFOs.
– Larger values can help reduce overhead when there are many

outstanding messages
– DCMF messaging uses up to 7 remote get FIFOs.
– Rounded up to the nearest multiple of 32

 DCMF_POLLLIMIT=x
– Default 16
– This sets the limit on the number of consecutive non-empty polls of

the reception FIFO before exiting the advance function
– A value of 0 means stay in advance until the FIFOs are empty

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – DMA Tuning Parameters

 DCMF_INJCOUNTER=x
– Default is 8
– Sets the number of DMA injection counter subgroups that

DCMF can use. Maximum is 8.
– Only useful if something else is using the DMA, ie, an

application making SPI calls directly

 DCMF_RECCOUNTER=x
– Same as INJCOUNTER, but for reception counter

subgroups.

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – DMA Tuning Parameters

 DCMF_FIFOMODE=DEFAULT/RZVANY/ALLTOALL
– Determines how many injection FIFOs are used and what they are

used for
– DEFAULT uses 22 injection FIFOs.
– RZVANY uses 6 more remote get FIFOs than DEFAULT.
– ALLTOALL uses 16 alltoall FIFOs (instead of 6) that can inject into

any of the torus FIFOs.
– Try RZVANY if your app uses lots of large messages
– Try ALLTOALL if your app does lots of alltoall communications
– Note: RZVANY and ALLTOALL consume more memory – 32k per

extra FIFO
– Note: You can’t coexist with “native” SPI calls if you aren’t in

DEFAULT mode

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - Mapping

 Mapping can help point-to-point based codes
 Stock mappings implemented already – XYZT, XZYT, YXZT,

YZXT, ZXYT, ZYXT, TXYZ, TXZY, TYXZ, TYZX, TZXY, TZYX
 Default mapping in VNM/Dual is XYZT (sorry about that)

– Cores on the same node are not contiguous MPI ranks

– specifying TXYZ can be very helpful
 (almost)Arbitrary mapping files can be used
 mpirun –mapfile XYZT
 mpirun –mapfile /path/to/my/mapfile.txt

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - Mapping

 Example:
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

 Line number in file is desired MPI rank. Each node
in partition must be listed in file.

 Coordinates are X, Y, Z, and core ID (virtual node
mode/dual mode)

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Communicator Creation
 APIs to map nodes to specific hardware and/or pset configurations

– MPIX_Cart_comm_create()
• Returns an MPI communicator that is exactly the same as the underlying

hardware
• Eliminates need for complex node-mapping files

– MPIX_Pset_same_comm_create()
• Returns a communicator where all nodes belong to the same pset

– MPIX_Pset_diff_comm_create()
• Returns a communicator where all nodes have the same pset rank

– MPI_Cart_create() with reorder true attempts to give communicators
that mirror hardware

 DCMF_TOPOLOGY=0 disables any attempt to give good
communicators from MPI_Cart_create() calls

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - MPIX_Cart_comm_create()
 Creates a 4D Cartesian communicator

– Mimics the hardware

– The X, Y & Z dimensions match those of the partition

– The T dimension will have cardinality 1 in copro, 2 in dual, 4
in VNM

– The communicator wrap-around links match

– The coordinates of a node in the communicator match its
coordinates in the partition

 Important
– This is a collective operation and must be run on all nodes

– Check the return code when using this function! Look for
MPI_SUCCESS

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P - MPIX_Pset_same_comm_create()
 Creates communicators where

the members share an I/O
node

 Useful to maximize the
number of I/O nodes used
during I/O operations
– Node 0 in each of the

communicators can be arbitrarily
used as the “master node” for
the communicator, collecting
information from the other nodes
for writing to disk.

Application

Comm
1

Comm
2

Comm
3

Comm
4

1

2

3

4

5

6

7

8

Pset 4

1

2

3

4

5

6

7

8

Pset 3

1

2

3

4

5

6

7

8

Pset 2

1

2

3

4

5

6

7

8

Pset 1

MPI on BG/P

© 2007 IBM Corporation

MPI - MPIX_Pset_diff_comm_create ()
 All nodes in the communicator have

a different I/O node
 Rarely used without using

same_comm() too
– Nodes without rank 0 in

same_comm() sleep
– Nodes with rank 0 in same_comm()

would have a communicator created
with diff_comm(). That
communicator could be used
instead of MPI_COMM_WORLD for
communication/coordination of I/O
requests

Comm
1

Comm
2

Comm
3

Comm
4

Comm
5

Comm
6

Comm
7

Comm
8

Pset 4Pset 3Pset 2Pset 1

8888

7777

6666

5555

4444

3333

2222

1111

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Collectives

 Currently optimized collectives:
– Broadcast (COMM_WORLD, rectangle, arbitrary)
– (All)reduce (COMM_WORLD, rectangle, arbitrary)
– Alltoall(v|w) (all comms, single threaded only)
– Barrier (COMM_WORLD, arbitrary)
– Allgather(v) (uses (async)bcast, reduce, or alltoall)
– Gather (uses reduce)
– Reduce_scatter (uses reduce, then scatterv)
– Scatter (uses bcast)
– Scatterv (uses alltoallv or bcast with an env var)

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Collectives

 Use collectives whenever possible
– For example, replacing lots of sends/recvs with an

alltoall(v)

– Bad idea to implement collectives using your own point-
to-point based algorithm
• Too much overhead on point to point communications
• Using MPI Send/Recv has message matching overhead
• Can’t take advantage of BG/P networks

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Collectives Options

 Optimized collectives can be disabled if necessary
– DCMF_COLLECTIVE=0 or DCMF_COLLECTIVES=0
– Disabling all can save application memory space, at the expense of performance

(~10mb)
– Specific collectives can be forced to use MPICH:

• DCMF_{}=MPICH eg, DCMF_BCAST=MPICH
– Specific collectives can attempt to use certain algorithms:

• DCMF_ALLGATHER=ALLTOALLV DCMF_SCATTERV=BCAST
 Generally unadvisable to force alternative algorithms.
 “Well-behaved” applications can also use:

– DCMF_SAFEALLGATHERV=Y
– DCMF_SAFEALLGATHER=Y
– DCMF_SAFESCATTERV=Y

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Our Collectives Strategies

 Reduce/Allreduce:
– If the tree supports the operation and datatype and you are on

COMM_WORLD, use the tree
– else if you are on a rectangular communicator use a rectangular

allreduce algorithm
– else use a binomial algorithm
– else use MPICH

 Barrier:
– If you are on COMM_WORLD, use GI
– else use binomial
– else use MPICH

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Our Collectives Strategies

 Bcast
– If COMM_WORLD use tree
– Else if communicator is rectangular use an async

rectangle protocol for small messages, then switch to
synchronous
• DCMF_ASYNCCUTOFF=8192

– Else if communicator is irregular use an async binomial
protocol for small messages, then switch to synchronous
• DCMF_ASYNCCUTOFF=16384

– Else use MPICH

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Our Collectives Strategies

 Allgather(v)
– If treereduce and treebcast available and large message

• Use bcast. If smaller message use reduce
– If rectangular subcomm send a number of async bcasts, wait,

repeat
• DCMF_NUMREQUESTS=32 is default

– If irregular subcomm send a number of async binom bcasts,
wait, repeat
• DCMF_NUMREQUESTS=32 is default

– Else use alltoall
– Else use MPICH

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P

 Performance hints/suggestions
– Avoiding deadlock

– Bad coding ideas

– Touching buffers early

– Mixing collectives and point-to-point

– Flooding one node

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Avoid deadlocks

 Talk before you listen.
 Illegal MPI code

– find it in most MPI books

 BlueGene/P MPI is designed not
to deadlock easily.

– It will likely survive this
code.

 This code will cause MPI to
allocate memory to deal with
unexpected messages. If MPI
runs out of memory, it will stop
with an error message

CPU1 code:

MPI_Send (cpu2);

MPI_Recv(cpu2);

CPU2 code:

MPI_Send(cpu1);

MPI_Recv(cpu1);

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Send/Recv in Opposite Order

 Post receives in one order,
sends in the opposite order

 This is legal MPI code

 BlueGene/P MPI can choke if the
sum of buffers is greater than
the amount of physical memory

– Packet Pacing helps

…but try to avoid doing
this anyway

CPU1 code:

MPI_ISend(cpu2, tag1);

MPI_ISend(cpu2, tag2);

...

MPI_ISend(cpu2, tagn);

CPU2 code:

MPI_Recv(cpu1, tagn);

MPI_Recv(cpu1, tagn-1);

...

MPI_Recv(cpu1, tag1);

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Touching buffers early

 write send/receive buffers
before completion

– results in data race on any
machine

 touch send buffers before
message completion

– not legal by standard

– BG/P MPI will survive it today

– no guarantee about tomorrow

 touch receive buffers before
completion

– BG/P MPI will yield wrong
results

req = MPI_Isend (buffer);

buffer[0] = something;

MPI_Wait(req);

req = MPI_Isend (buffer);

z = buffer[0];

MPI_Wait (req);

req = MPI_Irecv (buffer);

z = buffer[0];

MPI_Wait (req);

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – MPI_Test memory leaks

 Have to wait for all requests
– The standard requires waiting

– Or looping until MPI_Test returns
true

– Otherwise, you are leaking
requests

 MPI_Test advances the message
layer on each call

 We don’t get much comm/compute
overlap so just do the MPI_Wait
instead of an MPI_Test.

Code:
req = MPI_Isend(...);

MPI_Test (req);

... do something else; forget about req ...

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Collectives mixed with point-to-point

 On the ragged edge of
legality

 BlueGene/P MPI works

 Multiple networks issue:
– Isend handled by torus

network

– Barrier handled by GI network

 Try to avoid this

CPU 1 code:

req = MPI_Isend (cpu2);

MPI_Barrier();

MPI_Wait(req);

CPU 2 code:

MPI_Recv (cpu1);

MPI_Barrier();

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Spamming one node
 This is legal MPI code

– also ... bad idea

– not scalable, even when it
works

 BlueGene/P MPI can run out of
buffer space (packet pacing
helps though)

 One (bad) solution – use SSend
– Forces synchronicity

– Giant performance hit

 Plenty of examples of this out
there

– Don't write code such as this

– Even if you think it should
work

CPU 1 to n-1 code:
MPI_Send(cpu0);

CPU 0 code:

for (i=1; i<n; i++)

 MPI_Recv(cpu[i]);

MPI on BG/P

© 2007 IBM Corporation

MPI on BG/P – Spamming one node

 Try multiple masters
– Need to find optimal master/submaster/worker

arrangement

 If funneling to one node for I/O
– Try MPI I/O

– Use the communicator creation functions to optimize I/O
usage

MPI on BG/P

© 2007 IBM Corporation

MPI IO

 BG/P supports the full MPI IO implementation
 BG/P specific “device”, plus support for GFPS, PVFS
 Also use the MPIX_Pset_{}_comm_create routines
 Env vars for tuning

– BGLMPIO_COMM – Defines how data is exchanged on collective reads/writes.
Default is 0 – Use MPI_Alltoallv. 1 uses MPI_Isend/Irecv

– BGLMPIO_TUNEGATHER – Tune how offsets are communicated for
aggregator I/O. Default is 1 – Use MPI_Allreduce. 0 uses two MPI_Allgather
calls

– BGLMPIO_TUNEBLOCKING – Tune how aggregate file domains are
calculated. Default is 1 – Use the underlying file system’s block size and use
MPI_ALLTOALLV to exchange information. 0 says evenly calculate file
domains across aggregators and use MPI_Isend/Irecv to exchange the
information

MPI on BG/P

© 2007 IBM Corporation

GPFS

 Red paper/redbook coming soon for things to tune
on your service node to improve GPFS
performance

 Until then, use the MPIX_Pset_{} functions and do
as much as you can at the app level for IO tuning

 We can help with specific IO questions too

MPI on BG/P

© 2007 IBM Corporation

Questions?

